top of page

Detect Noise Level Audio Decibels in MXChip Azure IoT DevKit

Playing with Azure IoT DevKit MXChip is always fun, the device has many capabilities. For the past few days, I have been working with some of the capabilities of this device like Atmospheric pressure, Temperature, Humidity through its Sensors. In this Article, I will show you how you can calculate the noise level using the microphone of AZ3166 IoT Device. Now let’s start implementing the same. I hope you will like it.


Background

In our last article, we have already seen how to read the temperature, humidity, atmospheric pressure from the MXChip AZ3166 sensors and send those to our Azure IoT Hub. Here in this article let’s do the following tasks.

  1. Find the Noise level using the AudioClassV2 class

  2. Send the Values to our IoT Hub

  3. Configure the Existing Angular application with a new component to show Decibel values

Source Code

Please feel free to play around with this repository.


Using the Code

Once you have your own workspace, we can open the solution in VSCode and start coding.


main.ino

This is our solution starting point, every project must have its own sketch file, usually, this file will be contained at least the functions loop() and setup().


Before we get started, let’s include the header files we are going to use.

//Header files - Start//
#include "AZ3166WiFi.h"
#include "AzureIotHub.h"
#include "DevKitMQTTClient.h"
#include "config.h"
#include "utility.h"
#include "SystemTickCounter.h"
#include "RingBuffer.h"
#include "parson.h"
#include "EEPROMInterface.h"
#include "http_client.h"
#include <Arduino.h>
#include <stdio.h>
#include <math.h>
#include "OledDisplay.h"
#include "AudioClassV2.h"
#include "stm32412g_discovery_audio.h"
#include "RGB_LED.h"
#include <stdint.h>

#define MFCC_WRAPPER_DEFINED
#include "featurizer.h"
//Header files - End//
//**********************//

Now we can declare our constants and variables.

//Constants and variables- Start//
enum AppState{  
    APPSTATE_Init,  
    APPSTATE_Error,  
    APPSTATE_Recording
};

static AppState appstate;
// These numbers need to match the compiled ELL models.
const int SAMPLE_RATE = 16000;
const int SAMPLE_BIT_DEPTH = 16;
const int FEATURIZER_INPUT_SIZE = 512;
const int FRAME_RATE = 33; 
// assumes a "shift" of 512 and 512/16000 = 0.032ms per frame.
const int FEATURIZER_OUTPUT_SIZE = 80;
const int CLASSIFIER_OUTPUT_SIZE = 31;
const float THRESHOLD = 0.9;
static int scaled_input_buffer_pos = 0;
static float scaled_input_buffer[FEATURIZER_INPUT_SIZE]; 
// raw audio converted to floatconst 
int MAX_FEATURE_BUFFERS = 10;                                                // set to buffer up to 1 second of audio in circular buffer
static float featurizer_input_buffers[MAX_FEATURE_BUFFERS][FEATURIZER_INPUT_SIZE]; 
// input to featurizerstatic 
int featurizer_input_buffer_read = -1;                                      // next read posstatic 
int featurizer_input_buffer_write = 0;                                      // next write posstatic 
int dropped_frames = 0;static float featurizer_output_buffer[FEATURIZER_OUTPUT_SIZE]; 
// 40 channelsstatic float classifier_output_buffer[CLASSIFIER_OUTPUT_SIZE]; 
// 31 classesstatic 
int raw_audio_count = 0;
static char raw_audio_buffer[AUDIO_CHUNK_SIZE];
static int prediction_count = 0;
static int last_prediction = 0;
static int last_confidence = 0; 
// as a percentage between 0 and 100.
static uint8_t maxGain = 0;
static uint8_t minGain = 0;
int decibels = 0;
float min_level = 100;
float max_level = 0;
RGB_LED rgbLed;
static bool hasWifi = false;
static bool messageSending = true;
static uint64_t send_interval_ms;
int messageCount = 0;       
// holds ID
bool messageReceived = false;
char device_id[6];
AudioClass &Audio = AudioClass::getInstance();
//Constants and variables- End//
//************************************//


Now we can add the codes for the configuration, usually, you wouldn’t have to edit any codes in this section.

//Configuration functions - Start//
static void initWifi()
{  
    Screen.print(2, "Connecting...");  
    
    if (WiFi.begin() == WL_CONNECTED)  
    {    
        IPAddress ip = WiFi.localIP();    
        Screen.print(1, ip.get_address());    
        hasWifi = true;    
        Screen.print(2, "Running... \r\n");  
     }  
     else  
     {    
         hasWifi = false;    
         Screen.print(1, "No Wi-Fi\r\n ");  
      }
  }

static void sendConfirmationCallback(IOTHUB_CLIENT_CONFIRMATION_RESULT result)
{  
    if (result == IOTHUB_CLIENT_CONFIRMATION_OK)  
    {    
        blinkSendConfirmation();  
     }
}

static void messageCallback(const char *payLoad, int size)
{  
    blinkLED();  
    Screen.print(1, payLoad, true);
 }
 
static void deviceTwinCallback(DEVICE_TWIN_UPDATE_STATE updateState, const unsigned char *payLoad, int size)
{  
    char *temp = (char *)malloc(size + 1);  
    if (temp == NULL)  
    {    
        return;  
     }  
     
     memcpy(temp, payLoad, size);  
     temp[size] = '\0';  
     parseTwinMessage(updateState, temp);  
     free(temp);
     }
     
static int deviceMethodCallback(const char *methodName, const unsigned char *payload, int size, unsigned char **response, int *response_size)
{  
   LogInfo("Try to invoke method %s", methodName);  
   const char *responseMessage = "\"Successfully invoke device method\"";  
    int result = 200;  
    
    if (strcmp(methodName, DIRECT_METHOD_NAME) == 0)  
    {    
        messageReceived = true;    
        char *temp = (char *)malloc(size + 1);    
        memcpy(temp, payload, size);    
        temp[size] = '\0';    
        
        if (temp != NULL)    
        {      
            Screen.init();      
            Screen.print(0, "NEW MESSAGE!");      
            Screen.print(2, temp);    
         }    
         free(temp);  
         }  
         else  
         {    
             LogInfo("No method %s found", methodName);    
             responseMessage = "\"No method found\"";    
             result = 404;  
         }  
         *response_size = strlen(responseMessage);  
         *response = (unsigned char *)malloc(*response_size);  
         strncpy((char *)(*response), responseMessage, *response_size);  
         
         return result;
  }
//Configuration functions - End//
//***********************************//


As I mentioned earlier, every INO file will have its own setup() and loop() function. We can modify our setup() function as below.

void setup(){  
    Screen.init();  
    Screen.print(0, "IoT Device Demo");  
    Screen.print(2, "Initializing..."); 
     
    Screen.print(3, " > Serial");  
    Serial.begin(115200); 
     
    // Initialize the WiFi module  
    Screen.print(3, " > WiFi");  
    hasWifi = false;  
    initWifi();  
    
    if (!hasWifi)  
    {    
      return;  
    }  
    Screen.print(3, " > Sensors");  
    sensorInit();  
    
    Screen.print(3, " > IoT Hub");  
    DevKitMQTTClient_Init(true);  
    DevKitMQTTClient_SetOption(OPTION_MINI_SOLUTION_NAME, "mlIoTPlatformDevice");  DevKitMQTTClient_SetSendConfirmationCallback(sendConfirmationCallback);  
    DevKitMQTTClient_SetMessageCallback(messageCallback);  
    DevKitMQTTClient_SetDeviceTwinCallback(deviceTwinCallback);  
    DevKitMQTTClient_SetDeviceMethodCallback(deviceMethodCallback);  
    
    appstate = APPSTATE_Init;  
    Serial.begin(115200);  
    
    int filter_size = mfcc_GetInputSize(0);  
    if (filter_size != FEATURIZER_INPUT_SIZE)  
    {    
     Serial.printf("Featurizer input size %d is not equal to %d\n", filter_size, FEATURIZER_INPUT_SIZE);    
     show_error("Featurizer Error");  
     }  
     
     if (appstate != APPSTATE_Error)  
     {    
      ::memset(featurizer_input_buffers[0], 0, FEATURIZER_INPUT_SIZE);    
      // give it a whirl !!    
      mfcc_Filter(nullptr, featurizer_input_buffers[0], featurizer_output_buffer);    
      // check audio gain and print the result.    
      uint32_t id = Audio.readRegister(nau88c10_CHIPID_ADDR);    
      
      if (id == NAU88C10_ID)    
      {      
        Serial.printf("Found audio device: NAU88C10\r\n");    
      }    
      else    
      {      
        Serial.printf("Found audio device: 0x%x\r\n", id);    
      }    
      // a default gain level of 4 seems to work pretty well.    
      start_recording();    
      Screen.clean();    
      Screen.print(0, "Listening...");    
      Screen.print(1, "A = min gain");    
      Screen.print(2, "B = max gain");    
      minGain = 0;    
      maxGain = 7;    
      set_gain();    
      display_gain();  
      }  
  
  send_interval_ms = SystemTickCounterRead();
 }


The function loop() will be called each 5 seconds, as I had set the INTERVAL as 5000 milliseconds.

// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. 

// Interval time(ms) for sending message to IoT Hub
#define INTERVAL 5000

#define MESSAGE_MAX_LEN 256

#define TEMPERATURE_ALERT 30

#define DIRECT_METHOD_NAME "message"

// How many messages get sent to the hub before user has to press A to continue

#define MESSAGE_SEND_COUNT_LIMIT 350


Now we can edit our code of loop() function as below.

void loop(){  
    if (hasWifi)  {    
        if (messageSending && (int)(SystemTickCounterRead() - send_interval_ms) >= getInterval())    
        {      
            if (appstate != APPSTATE_Error)      
            {        
                if (dropped_frames > 0)        
                {          
                Serial.printf("%d dropped frames\n", dropped_frames);          
                dropped_frames = 0;        
                }        
    // process all the buffered input frames        
    featurizer_input_buffer_read = next(featurizer_input_buffer_read);        
    decibels = get_prediction(featurizer_input_buffers[featurizer_input_buffer_read]);     }      
    
    // Send data      
    char messagePayload[MESSAGE_MAX_LEN];      
    float *newValues;      
    
    newValues = setMessage(messageCount++, messagePayload, decibels);      
    
    if (!messageReceived)      
    {        
    // Update display        
        char buff[128];        
        sprintf(buff, "ID: %s \r\n Temp:%s°C    \r\n Humidity:%s%% \r\n Pres:%smb         \r\n", device_id, f2s(*(newValues), 1), f2s(*(newValues + 1), 1), f2s(*(newValues + 2), 1));        
        Screen.print(buff);      
        }      
        
        EVENT_INSTANCE *message = 
        DevKitMQTTClient_Event_Generate(messagePayload, MESSAGE);      
        DevKitMQTTClient_SendEventInstance(message);      
        send_interval_ms = SystemTickCounterRead();    
        }    
        else    
        {      
        DevKitMQTTClient_Check();    
        }  
        }  
   delay(10);
}



utility.cpp

As you can see, once we get the values from the function get_prediction (), we are passing the decibels values to our setMessage() function, which we have defined in the file utility.cpp. Inside the setMessage () function, we will add the decibels value to JSON object using the function json_object_set_number ().

// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. 

#include"HTS221Sensor.h"
#include"AzureIotHub.h"
#include"Arduino.h"
#include"parson.h"
#include<assert.h>
#include"config.h"
#include"RGB_LED.h"
#include"Sensor.h"
#include"LIS2MDLSensor.h"

#define RGB_LED_BRIGHTNESS32
DevI2C *i2c;
HTS221Sensor *ht_sensor;
LPS22HBSensor *pressureSensor;
LSM6DSLSensor *acc_gyro;
LIS2MDLSensor *lis2mdl;

int gAxes[3];
int mAxes[3];

static RGB_LED rgbLed;
static int interval = INTERVAL;

int getInterval()
{
    return interval;
 }

void blinkLED(){  
    rgbLed.turnOff();  
    rgbLed.setColor(RGB_LED_BRIGHTNESS, 0, 0);
    delay(500);  
    rgbLed.turnOff();
    }
 
void blinkSendConfirmation()
{  
    rgbLed.turnOff();  
    rgbLed.setColor(0, 0, RGB_LED_BRIGHTNESS);
    delay(500);  
    rgbLed.turnOff();
 }

void
parseTwinMessage(DEVICE_TWIN_UPDATE_STATE updateState, constchar *message)
{  
    JSON_Value *root_value;  
    root_value = json_parse_string(message);
    
    if (json_value_get_type(root_value) != JSONObject)  
    {
    if (root_value != NULL)    
    {
     json_value_free(root_value);    
     }
     LogError("parse %s failed", message);
     return;  
     }  
     
JSON_Object *root_object = json_value_get_object(root_value);
double val = 0;
if (updateState == DEVICE_TWIN_UPDATE_COMPLETE)  
 {    
     JSON_Object *desired_object = json_object_get_object(root_object, "desired");
     if (desired_object != NULL)    
     {      
         val = json_object_get_number(desired_object, "interval");    
     }  
  }
 else  
     {    
     val = json_object_get_number(root_object, "interval");  
     }
     if (val > 500)  
     {    
      interval = (int)val;
      LogInfo(">>> Device twin updated: set interval to %d", interval);  
         }
         json_value_free(root_value);
         }
 
 void sensorInit()
 {  
     i2c = new DevI2C(D14, D15);  
     ht_sensor = new HTS221Sensor(*i2c);  
     ht_sensor->init(NULL);  
     pressureSensor = new LPS22HBSensor(*i2c);  
     pressureSensor -> init(NULL);  
     acc_gyro = new LSM6DSLSensor(*i2c, D4, D5);  
     acc_gyro->init(NULL);  
     acc_gyro->enableAccelerator();  
     lis2mdl = new LIS2MDLSensor(*i2c);  
     lis2mdl->init(NULL);
     }
 float readTemperature()
 {  
     ht_sensor->reset();
     float temperature = 0;  
     ht_sensor->getTemperature(&temperature);
     return temperature;
     }
     float readHumidity()
     {  
     ht_sensor->reset();
     float humidity = 0;  
     ht_sensor->getHumidity(&humidity);
     return humidity;
     }
     float readPressure()
     {
     float pressure = 0;  
     pressureSensor->getPressure(&pressure);
     return pressure;
     }
     
void setAccelAxes(){  
acc_gyro->getXAxes(gAxes);
}
void setMagAxes()
{  
lis2mdl->getMAxes(mAxes);
}
float * setMessage(
int messageId, char *payload, int decibels)
{
staticfloat newValues[3];  
JSON_Value *root_value = json_value_init_object();  
JSON_Object *root_object = json_value_get_object(root_value);
char *serialized_string = NULL;json_object_set_number(root_object, "messageId", messageId);
json_object_set_number(root_object, "decibels", decibels);
     // Obtain values
     float temperature = readTemperature();
     float humidity = readHumidity();
     float pressure = readPressure();
     setAccelAxes();setMagAxes();
     // Set new values  
     newValues[0] = temperature;  
     newValues[1] = humidity;  
     newValues[2] = pressure;
     bool temperatureAlert = false;
     // Set temp json
     json_object_set_number(root_object, "temperature", temperature);
     // Set humidity json
     json_object_set_number(root_object, "humidity", humidity);
     // Set pressure json
     json_object_set_number(root_object, "pressure", pressure);
     // Set gyro axes
     json_object_set_number(root_object, "accelX", gAxes[0]);
     json_object_set_number(root_object, "accelY", gAxes[1]);
     json_object_set_number(root_object, "accelZ", gAxes[2]);
     
     // Set mag axes
     json_object_set_number(root_object, "magX", mAxes[0]);
     json_object_set_number(root_object, "magY", mAxes[1]);
     json_object_set_number(root_object, "magZ", mAxes[2]);  serialized_string = json_serialize_to_string_pretty(root_value);
     snprintf(payload, MESSAGE_MAX_LEN, "%s", serialized_string);
     json_free_serialized_string(serialized_string)
     json_value_free(root_value);
     return newValues;
    }

You should also add the files featurizer.h and featurizer.s to get it working. You can get those files from the source code repository mentioned above.


Compile and Upload to the Device

As we have already made the needed changes, it is time to compile the Device solution and upload the same to our Device. Press F1 and select Azure IoT Device Workbench: Compile Device Code. If you ever get an error as “error: utility.h: No such file or directory”, please compile the device code again. If you are facing any unexpected errors, please delete the “.build” folder and compile again.


Once you get a message as “ [Done] Finished verify sketch — Main.ino “ in your Output window, you can upload the solution to your device. To do so, press F1 again, and select “ Azure IoT Device Workbench: Upload Device Code”. Please make sure that the device is been connected to your machine. If everything goes well, you will be getting a message as “ [Done] Uploaded the sketch: Main.ino”.

Please remember to see the GitHub repository for the full code.


Device to Cloud Messages

Now your device will be sending the Decibels data to the Azure IoT Hub. Let’s see that in the D2C Monitoring window.

{  
    "messageId": 119,  
    "decibels": 94,  
    "temperature": 26.4,  
    "humidity": 34.400002,  
    "pressure": 994.585693,  
    "accelX": -9,  
    "accelY": -12,  
    "accelZ": 993,  
    "magX": -156,  
    "magY": -5,  
    "magZ": -253
 }

Send MXChip Data to Cloud




Source: Medium


The Tech Platform

0 comments
bottom of page